3.366 \(\int \frac{a B+b B \tan (c+d x)}{(a+b \tan (c+d x))^{3/2}} \, dx\)

Optimal. Leaf size=406 \[ -\frac{b B \log \left (-\sqrt{2} \sqrt{\sqrt{a^2+b^2}+a} \sqrt{a+b \tan (c+d x)}+\sqrt{a^2+b^2}+a+b \tan (c+d x)\right )}{2 \sqrt{2} d \sqrt{a^2+b^2} \sqrt{\sqrt{a^2+b^2}+a}}+\frac{b B \log \left (\sqrt{2} \sqrt{\sqrt{a^2+b^2}+a} \sqrt{a+b \tan (c+d x)}+\sqrt{a^2+b^2}+a+b \tan (c+d x)\right )}{2 \sqrt{2} d \sqrt{a^2+b^2} \sqrt{\sqrt{a^2+b^2}+a}}+\frac{b B \tanh ^{-1}\left (\frac{\sqrt{\sqrt{a^2+b^2}+a}-\sqrt{2} \sqrt{a+b \tan (c+d x)}}{\sqrt{a-\sqrt{a^2+b^2}}}\right )}{\sqrt{2} d \sqrt{a^2+b^2} \sqrt{a-\sqrt{a^2+b^2}}}-\frac{b B \tanh ^{-1}\left (\frac{\sqrt{\sqrt{a^2+b^2}+a}+\sqrt{2} \sqrt{a+b \tan (c+d x)}}{\sqrt{a-\sqrt{a^2+b^2}}}\right )}{\sqrt{2} d \sqrt{a^2+b^2} \sqrt{a-\sqrt{a^2+b^2}}} \]

[Out]

(b*B*ArcTanh[(Sqrt[a + Sqrt[a^2 + b^2]] - Sqrt[2]*Sqrt[a + b*Tan[c + d*x]])/Sqrt[a - Sqrt[a^2 + b^2]]])/(Sqrt[
2]*Sqrt[a^2 + b^2]*Sqrt[a - Sqrt[a^2 + b^2]]*d) - (b*B*ArcTanh[(Sqrt[a + Sqrt[a^2 + b^2]] + Sqrt[2]*Sqrt[a + b
*Tan[c + d*x]])/Sqrt[a - Sqrt[a^2 + b^2]]])/(Sqrt[2]*Sqrt[a^2 + b^2]*Sqrt[a - Sqrt[a^2 + b^2]]*d) - (b*B*Log[a
 + Sqrt[a^2 + b^2] + b*Tan[c + d*x] - Sqrt[2]*Sqrt[a + Sqrt[a^2 + b^2]]*Sqrt[a + b*Tan[c + d*x]]])/(2*Sqrt[2]*
Sqrt[a^2 + b^2]*Sqrt[a + Sqrt[a^2 + b^2]]*d) + (b*B*Log[a + Sqrt[a^2 + b^2] + b*Tan[c + d*x] + Sqrt[2]*Sqrt[a
+ Sqrt[a^2 + b^2]]*Sqrt[a + b*Tan[c + d*x]]])/(2*Sqrt[2]*Sqrt[a^2 + b^2]*Sqrt[a + Sqrt[a^2 + b^2]]*d)

________________________________________________________________________________________

Rubi [A]  time = 0.334315, antiderivative size = 406, normalized size of antiderivative = 1., number of steps used = 12, number of rules used = 8, integrand size = 28, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.286, Rules used = {21, 3485, 708, 1094, 634, 618, 206, 628} \[ -\frac{b B \log \left (-\sqrt{2} \sqrt{\sqrt{a^2+b^2}+a} \sqrt{a+b \tan (c+d x)}+\sqrt{a^2+b^2}+a+b \tan (c+d x)\right )}{2 \sqrt{2} d \sqrt{a^2+b^2} \sqrt{\sqrt{a^2+b^2}+a}}+\frac{b B \log \left (\sqrt{2} \sqrt{\sqrt{a^2+b^2}+a} \sqrt{a+b \tan (c+d x)}+\sqrt{a^2+b^2}+a+b \tan (c+d x)\right )}{2 \sqrt{2} d \sqrt{a^2+b^2} \sqrt{\sqrt{a^2+b^2}+a}}+\frac{b B \tanh ^{-1}\left (\frac{\sqrt{\sqrt{a^2+b^2}+a}-\sqrt{2} \sqrt{a+b \tan (c+d x)}}{\sqrt{a-\sqrt{a^2+b^2}}}\right )}{\sqrt{2} d \sqrt{a^2+b^2} \sqrt{a-\sqrt{a^2+b^2}}}-\frac{b B \tanh ^{-1}\left (\frac{\sqrt{\sqrt{a^2+b^2}+a}+\sqrt{2} \sqrt{a+b \tan (c+d x)}}{\sqrt{a-\sqrt{a^2+b^2}}}\right )}{\sqrt{2} d \sqrt{a^2+b^2} \sqrt{a-\sqrt{a^2+b^2}}} \]

Antiderivative was successfully verified.

[In]

Int[(a*B + b*B*Tan[c + d*x])/(a + b*Tan[c + d*x])^(3/2),x]

[Out]

(b*B*ArcTanh[(Sqrt[a + Sqrt[a^2 + b^2]] - Sqrt[2]*Sqrt[a + b*Tan[c + d*x]])/Sqrt[a - Sqrt[a^2 + b^2]]])/(Sqrt[
2]*Sqrt[a^2 + b^2]*Sqrt[a - Sqrt[a^2 + b^2]]*d) - (b*B*ArcTanh[(Sqrt[a + Sqrt[a^2 + b^2]] + Sqrt[2]*Sqrt[a + b
*Tan[c + d*x]])/Sqrt[a - Sqrt[a^2 + b^2]]])/(Sqrt[2]*Sqrt[a^2 + b^2]*Sqrt[a - Sqrt[a^2 + b^2]]*d) - (b*B*Log[a
 + Sqrt[a^2 + b^2] + b*Tan[c + d*x] - Sqrt[2]*Sqrt[a + Sqrt[a^2 + b^2]]*Sqrt[a + b*Tan[c + d*x]]])/(2*Sqrt[2]*
Sqrt[a^2 + b^2]*Sqrt[a + Sqrt[a^2 + b^2]]*d) + (b*B*Log[a + Sqrt[a^2 + b^2] + b*Tan[c + d*x] + Sqrt[2]*Sqrt[a
+ Sqrt[a^2 + b^2]]*Sqrt[a + b*Tan[c + d*x]]])/(2*Sqrt[2]*Sqrt[a^2 + b^2]*Sqrt[a + Sqrt[a^2 + b^2]]*d)

Rule 21

Int[(u_.)*((a_) + (b_.)*(v_))^(m_.)*((c_) + (d_.)*(v_))^(n_.), x_Symbol] :> Dist[(b/d)^m, Int[u*(c + d*v)^(m +
 n), x], x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[b*c - a*d, 0] && IntegerQ[m] && ( !IntegerQ[n] || SimplerQ[c +
 d*x, a + b*x])

Rule 3485

Int[((a_) + (b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Dist[b/d, Subst[Int[(a + x)^n/(b^2 + x^2), x], x
, b*Tan[c + d*x]], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[a^2 + b^2, 0]

Rule 708

Int[1/(Sqrt[(d_) + (e_.)*(x_)]*((a_) + (c_.)*(x_)^2)), x_Symbol] :> Dist[2*e, Subst[Int[1/(c*d^2 + a*e^2 - 2*c
*d*x^2 + c*x^4), x], x, Sqrt[d + e*x]], x] /; FreeQ[{a, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0]

Rule 1094

Int[((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(-1), x_Symbol] :> With[{q = Rt[a/c, 2]}, With[{r = Rt[2*q - b/c, 2]}
, Dist[1/(2*c*q*r), Int[(r - x)/(q - r*x + x^2), x], x] + Dist[1/(2*c*q*r), Int[(r + x)/(q + r*x + x^2), x], x
]]] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0] && NegQ[b^2 - 4*a*c]

Rule 634

Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Dist[(2*c*d - b*e)/(2*c), Int[1/(a +
 b*x + c*x^2), x], x] + Dist[e/(2*c), Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] &
& NeQ[2*c*d - b*e, 0] && NeQ[b^2 - 4*a*c, 0] &&  !NiceSqrtQ[b^2 - 4*a*c]

Rule 618

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rubi steps

\begin{align*} \int \frac{a B+b B \tan (c+d x)}{(a+b \tan (c+d x))^{3/2}} \, dx &=B \int \frac{1}{\sqrt{a+b \tan (c+d x)}} \, dx\\ &=\frac{(b B) \operatorname{Subst}\left (\int \frac{1}{\sqrt{a+x} \left (b^2+x^2\right )} \, dx,x,b \tan (c+d x)\right )}{d}\\ &=\frac{(2 b B) \operatorname{Subst}\left (\int \frac{1}{a^2+b^2-2 a x^2+x^4} \, dx,x,\sqrt{a+b \tan (c+d x)}\right )}{d}\\ &=\frac{(b B) \operatorname{Subst}\left (\int \frac{\sqrt{2} \sqrt{a+\sqrt{a^2+b^2}}-x}{\sqrt{a^2+b^2}-\sqrt{2} \sqrt{a+\sqrt{a^2+b^2}} x+x^2} \, dx,x,\sqrt{a+b \tan (c+d x)}\right )}{\sqrt{2} \sqrt{a^2+b^2} \sqrt{a+\sqrt{a^2+b^2}} d}+\frac{(b B) \operatorname{Subst}\left (\int \frac{\sqrt{2} \sqrt{a+\sqrt{a^2+b^2}}+x}{\sqrt{a^2+b^2}+\sqrt{2} \sqrt{a+\sqrt{a^2+b^2}} x+x^2} \, dx,x,\sqrt{a+b \tan (c+d x)}\right )}{\sqrt{2} \sqrt{a^2+b^2} \sqrt{a+\sqrt{a^2+b^2}} d}\\ &=\frac{(b B) \operatorname{Subst}\left (\int \frac{1}{\sqrt{a^2+b^2}-\sqrt{2} \sqrt{a+\sqrt{a^2+b^2}} x+x^2} \, dx,x,\sqrt{a+b \tan (c+d x)}\right )}{2 \sqrt{a^2+b^2} d}+\frac{(b B) \operatorname{Subst}\left (\int \frac{1}{\sqrt{a^2+b^2}+\sqrt{2} \sqrt{a+\sqrt{a^2+b^2}} x+x^2} \, dx,x,\sqrt{a+b \tan (c+d x)}\right )}{2 \sqrt{a^2+b^2} d}-\frac{(b B) \operatorname{Subst}\left (\int \frac{-\sqrt{2} \sqrt{a+\sqrt{a^2+b^2}}+2 x}{\sqrt{a^2+b^2}-\sqrt{2} \sqrt{a+\sqrt{a^2+b^2}} x+x^2} \, dx,x,\sqrt{a+b \tan (c+d x)}\right )}{2 \sqrt{2} \sqrt{a^2+b^2} \sqrt{a+\sqrt{a^2+b^2}} d}+\frac{(b B) \operatorname{Subst}\left (\int \frac{\sqrt{2} \sqrt{a+\sqrt{a^2+b^2}}+2 x}{\sqrt{a^2+b^2}+\sqrt{2} \sqrt{a+\sqrt{a^2+b^2}} x+x^2} \, dx,x,\sqrt{a+b \tan (c+d x)}\right )}{2 \sqrt{2} \sqrt{a^2+b^2} \sqrt{a+\sqrt{a^2+b^2}} d}\\ &=-\frac{b B \log \left (a+\sqrt{a^2+b^2}+b \tan (c+d x)-\sqrt{2} \sqrt{a+\sqrt{a^2+b^2}} \sqrt{a+b \tan (c+d x)}\right )}{2 \sqrt{2} \sqrt{a^2+b^2} \sqrt{a+\sqrt{a^2+b^2}} d}+\frac{b B \log \left (a+\sqrt{a^2+b^2}+b \tan (c+d x)+\sqrt{2} \sqrt{a+\sqrt{a^2+b^2}} \sqrt{a+b \tan (c+d x)}\right )}{2 \sqrt{2} \sqrt{a^2+b^2} \sqrt{a+\sqrt{a^2+b^2}} d}-\frac{(b B) \operatorname{Subst}\left (\int \frac{1}{2 \left (a-\sqrt{a^2+b^2}\right )-x^2} \, dx,x,-\sqrt{2} \sqrt{a+\sqrt{a^2+b^2}}+2 \sqrt{a+b \tan (c+d x)}\right )}{\sqrt{a^2+b^2} d}-\frac{(b B) \operatorname{Subst}\left (\int \frac{1}{2 \left (a-\sqrt{a^2+b^2}\right )-x^2} \, dx,x,\sqrt{2} \sqrt{a+\sqrt{a^2+b^2}}+2 \sqrt{a+b \tan (c+d x)}\right )}{\sqrt{a^2+b^2} d}\\ &=\frac{b B \tanh ^{-1}\left (\frac{\sqrt{a+\sqrt{a^2+b^2}}-\sqrt{2} \sqrt{a+b \tan (c+d x)}}{\sqrt{a-\sqrt{a^2+b^2}}}\right )}{\sqrt{2} \sqrt{a^2+b^2} \sqrt{a-\sqrt{a^2+b^2}} d}-\frac{b B \tanh ^{-1}\left (\frac{\sqrt{a+\sqrt{a^2+b^2}}+\sqrt{2} \sqrt{a+b \tan (c+d x)}}{\sqrt{a-\sqrt{a^2+b^2}}}\right )}{\sqrt{2} \sqrt{a^2+b^2} \sqrt{a-\sqrt{a^2+b^2}} d}-\frac{b B \log \left (a+\sqrt{a^2+b^2}+b \tan (c+d x)-\sqrt{2} \sqrt{a+\sqrt{a^2+b^2}} \sqrt{a+b \tan (c+d x)}\right )}{2 \sqrt{2} \sqrt{a^2+b^2} \sqrt{a+\sqrt{a^2+b^2}} d}+\frac{b B \log \left (a+\sqrt{a^2+b^2}+b \tan (c+d x)+\sqrt{2} \sqrt{a+\sqrt{a^2+b^2}} \sqrt{a+b \tan (c+d x)}\right )}{2 \sqrt{2} \sqrt{a^2+b^2} \sqrt{a+\sqrt{a^2+b^2}} d}\\ \end{align*}

Mathematica [C]  time = 0.0575885, size = 88, normalized size = 0.22 \[ -\frac{i B \left (\frac{\tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a-i b}}\right )}{\sqrt{a-i b}}-\frac{\tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a+i b}}\right )}{\sqrt{a+i b}}\right )}{d} \]

Antiderivative was successfully verified.

[In]

Integrate[(a*B + b*B*Tan[c + d*x])/(a + b*Tan[c + d*x])^(3/2),x]

[Out]

((-I)*B*(ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a - I*b]]/Sqrt[a - I*b] - ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt
[a + I*b]]/Sqrt[a + I*b]))/d

________________________________________________________________________________________

Maple [B]  time = 0.105, size = 1575, normalized size = 3.9 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*B+b*B*tan(d*x+c))/(a+b*tan(d*x+c))^(3/2),x)

[Out]

1/4/d/b/(a^2+b^2)*ln(b*tan(d*x+c)+a+(a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)+(a^2+b^2)^(1/2))*B*(2
*(a^2+b^2)^(1/2)+2*a)^(1/2)*a^2+1/4/d*b/(a^2+b^2)*ln(b*tan(d*x+c)+a+(a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+
2*a)^(1/2)+(a^2+b^2)^(1/2))*B*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)-1/4/d/b/(a^2+b^2)^(3/2)*ln(b*tan(d*x+c)+a+(a+b*tan
(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)+(a^2+b^2)^(1/2))*B*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*a^3-1/4/d*b/(a^2
+b^2)^(3/2)*ln(b*tan(d*x+c)+a+(a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)+(a^2+b^2)^(1/2))*B*(2*(a^2+
b^2)^(1/2)+2*a)^(1/2)*a-1/d/b/(a^2+b^2)^(1/2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan((2*(a+b*tan(d*x+c))^(1/2)+(
2*(a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*B*a^2-1/d*b/(a^2+b^2)^(1/2)/(2*(a^2+b^2)^(1/2)-2*
a)^(1/2)*arctan((2*(a+b*tan(d*x+c))^(1/2)+(2*(a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*B+1/d/
b/(a^2+b^2)^(3/2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan((2*(a+b*tan(d*x+c))^(1/2)+(2*(a^2+b^2)^(1/2)+2*a)^(1/2)
)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*B*a^4+3/d*b/(a^2+b^2)^(3/2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan((2*(a+b*tan(
d*x+c))^(1/2)+(2*(a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*B*a^2+2/d*b^3/(a^2+b^2)^(3/2)/(2*(
a^2+b^2)^(1/2)-2*a)^(1/2)*arctan((2*(a+b*tan(d*x+c))^(1/2)+(2*(a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+b^2)^(1/2)-2
*a)^(1/2))*B-1/4/d/b/(a^2+b^2)*ln((a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)-b*tan(d*x+c)-a-(a^2+b^2
)^(1/2))*B*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*a^2-1/4/d*b/(a^2+b^2)*ln((a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*
a)^(1/2)-b*tan(d*x+c)-a-(a^2+b^2)^(1/2))*B*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)+1/4/d/b/(a^2+b^2)^(3/2)*ln((a+b*tan(d
*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)-b*tan(d*x+c)-a-(a^2+b^2)^(1/2))*B*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*a^3
+1/4/d*b/(a^2+b^2)^(3/2)*ln((a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)-b*tan(d*x+c)-a-(a^2+b^2)^(1/2
))*B*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*a+1/d/b/(a^2+b^2)^(1/2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan(((2*(a^2+b^2)^
(1/2)+2*a)^(1/2)-2*(a+b*tan(d*x+c))^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*B*a^2+1/d*b/(a^2+b^2)^(1/2)/(2*(a^2+
b^2)^(1/2)-2*a)^(1/2)*arctan(((2*(a^2+b^2)^(1/2)+2*a)^(1/2)-2*(a+b*tan(d*x+c))^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^
(1/2))*B-1/d/b/(a^2+b^2)^(3/2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan(((2*(a^2+b^2)^(1/2)+2*a)^(1/2)-2*(a+b*tan(
d*x+c))^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*B*a^4-3/d*b/(a^2+b^2)^(3/2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan
(((2*(a^2+b^2)^(1/2)+2*a)^(1/2)-2*(a+b*tan(d*x+c))^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*B*a^2-2/d*b^3/(a^2+b^
2)^(3/2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan(((2*(a^2+b^2)^(1/2)+2*a)^(1/2)-2*(a+b*tan(d*x+c))^(1/2))/(2*(a^2
+b^2)^(1/2)-2*a)^(1/2))*B

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*B+b*B*tan(d*x+c))/(a+b*tan(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 1.53637, size = 4593, normalized size = 11.31 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*B+b*B*tan(d*x+c))/(a+b*tan(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

-1/4*(4*sqrt(2)*(a^2 + b^2)*sqrt(B^4*b^2/((a^4 + 2*a^2*b^2 + b^4)*d^4))*d^4*(B^4/((a^2 + b^2)*d^4))^(3/4)*sqrt
((B^2*a^2 + B^2*b^2 + (a^3 + a*b^2)*d^2*sqrt(B^4/((a^2 + b^2)*d^4)))/(B^2*b^2))*arctan((sqrt(2)*(a^4 + 2*a^2*b
^2 + b^4)*sqrt(B^4*b^2/((a^4 + 2*a^2*b^2 + b^4)*d^4))*d^7*sqrt((sqrt(2)*B^5*b^3*d*sqrt((a*cos(d*x + c) + b*sin
(d*x + c))/cos(d*x + c))*(B^4/((a^2 + b^2)*d^4))^(1/4)*sqrt((B^2*a^2 + B^2*b^2 + (a^3 + a*b^2)*d^2*sqrt(B^4/((
a^2 + b^2)*d^4)))/(B^2*b^2))*cos(d*x + c) + B^6*a*b^2*cos(d*x + c) + B^6*b^3*sin(d*x + c) + (B^4*a^2*b^2 + B^4
*b^4)*d^2*sqrt(B^4/((a^2 + b^2)*d^4))*cos(d*x + c))/cos(d*x + c))*(B^4/((a^2 + b^2)*d^4))^(5/4)*sqrt((B^2*a^2
+ B^2*b^2 + (a^3 + a*b^2)*d^2*sqrt(B^4/((a^2 + b^2)*d^4)))/(B^2*b^2)) - sqrt(2)*(B^3*a^4*b + 2*B^3*a^2*b^3 + B
^3*b^5)*sqrt(B^4*b^2/((a^4 + 2*a^2*b^2 + b^4)*d^4))*d^7*sqrt((a*cos(d*x + c) + b*sin(d*x + c))/cos(d*x + c))*(
B^4/((a^2 + b^2)*d^4))^(5/4)*sqrt((B^2*a^2 + B^2*b^2 + (a^3 + a*b^2)*d^2*sqrt(B^4/((a^2 + b^2)*d^4)))/(B^2*b^2
)) - (B^6*a^4 + 2*B^6*a^2*b^2 + B^6*b^4)*sqrt(B^4*b^2/((a^4 + 2*a^2*b^2 + b^4)*d^4))*d^4*sqrt(B^4/((a^2 + b^2)
*d^4)) - (B^8*a^3 + B^8*a*b^2)*sqrt(B^4*b^2/((a^4 + 2*a^2*b^2 + b^4)*d^4))*d^2)/(B^10*b^2)) + 4*sqrt(2)*(a^2 +
 b^2)*sqrt(B^4*b^2/((a^4 + 2*a^2*b^2 + b^4)*d^4))*d^4*(B^4/((a^2 + b^2)*d^4))^(3/4)*sqrt((B^2*a^2 + B^2*b^2 +
(a^3 + a*b^2)*d^2*sqrt(B^4/((a^2 + b^2)*d^4)))/(B^2*b^2))*arctan((sqrt(2)*(a^4 + 2*a^2*b^2 + b^4)*sqrt(B^4*b^2
/((a^4 + 2*a^2*b^2 + b^4)*d^4))*d^7*sqrt(-(sqrt(2)*B^5*b^3*d*sqrt((a*cos(d*x + c) + b*sin(d*x + c))/cos(d*x +
c))*(B^4/((a^2 + b^2)*d^4))^(1/4)*sqrt((B^2*a^2 + B^2*b^2 + (a^3 + a*b^2)*d^2*sqrt(B^4/((a^2 + b^2)*d^4)))/(B^
2*b^2))*cos(d*x + c) - B^6*a*b^2*cos(d*x + c) - B^6*b^3*sin(d*x + c) - (B^4*a^2*b^2 + B^4*b^4)*d^2*sqrt(B^4/((
a^2 + b^2)*d^4))*cos(d*x + c))/cos(d*x + c))*(B^4/((a^2 + b^2)*d^4))^(5/4)*sqrt((B^2*a^2 + B^2*b^2 + (a^3 + a*
b^2)*d^2*sqrt(B^4/((a^2 + b^2)*d^4)))/(B^2*b^2)) - sqrt(2)*(B^3*a^4*b + 2*B^3*a^2*b^3 + B^3*b^5)*sqrt(B^4*b^2/
((a^4 + 2*a^2*b^2 + b^4)*d^4))*d^7*sqrt((a*cos(d*x + c) + b*sin(d*x + c))/cos(d*x + c))*(B^4/((a^2 + b^2)*d^4)
)^(5/4)*sqrt((B^2*a^2 + B^2*b^2 + (a^3 + a*b^2)*d^2*sqrt(B^4/((a^2 + b^2)*d^4)))/(B^2*b^2)) + (B^6*a^4 + 2*B^6
*a^2*b^2 + B^6*b^4)*sqrt(B^4*b^2/((a^4 + 2*a^2*b^2 + b^4)*d^4))*d^4*sqrt(B^4/((a^2 + b^2)*d^4)) + (B^8*a^3 + B
^8*a*b^2)*sqrt(B^4*b^2/((a^4 + 2*a^2*b^2 + b^4)*d^4))*d^2)/(B^10*b^2)) + sqrt(2)*(B^2*a*d^2*sqrt(B^4/((a^2 + b
^2)*d^4)) - B^4)*(B^4/((a^2 + b^2)*d^4))^(1/4)*sqrt((B^2*a^2 + B^2*b^2 + (a^3 + a*b^2)*d^2*sqrt(B^4/((a^2 + b^
2)*d^4)))/(B^2*b^2))*log((sqrt(2)*B^5*b^3*d*sqrt((a*cos(d*x + c) + b*sin(d*x + c))/cos(d*x + c))*(B^4/((a^2 +
b^2)*d^4))^(1/4)*sqrt((B^2*a^2 + B^2*b^2 + (a^3 + a*b^2)*d^2*sqrt(B^4/((a^2 + b^2)*d^4)))/(B^2*b^2))*cos(d*x +
 c) + B^6*a*b^2*cos(d*x + c) + B^6*b^3*sin(d*x + c) + (B^4*a^2*b^2 + B^4*b^4)*d^2*sqrt(B^4/((a^2 + b^2)*d^4))*
cos(d*x + c))/cos(d*x + c)) - sqrt(2)*(B^2*a*d^2*sqrt(B^4/((a^2 + b^2)*d^4)) - B^4)*(B^4/((a^2 + b^2)*d^4))^(1
/4)*sqrt((B^2*a^2 + B^2*b^2 + (a^3 + a*b^2)*d^2*sqrt(B^4/((a^2 + b^2)*d^4)))/(B^2*b^2))*log(-(sqrt(2)*B^5*b^3*
d*sqrt((a*cos(d*x + c) + b*sin(d*x + c))/cos(d*x + c))*(B^4/((a^2 + b^2)*d^4))^(1/4)*sqrt((B^2*a^2 + B^2*b^2 +
 (a^3 + a*b^2)*d^2*sqrt(B^4/((a^2 + b^2)*d^4)))/(B^2*b^2))*cos(d*x + c) - B^6*a*b^2*cos(d*x + c) - B^6*b^3*sin
(d*x + c) - (B^4*a^2*b^2 + B^4*b^4)*d^2*sqrt(B^4/((a^2 + b^2)*d^4))*cos(d*x + c))/cos(d*x + c)))/B^4

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} B \int \frac{1}{\sqrt{a + b \tan{\left (c + d x \right )}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*B+b*B*tan(d*x+c))/(a+b*tan(d*x+c))**(3/2),x)

[Out]

B*Integral(1/sqrt(a + b*tan(c + d*x)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{B b \tan \left (d x + c\right ) + B a}{{\left (b \tan \left (d x + c\right ) + a\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*B+b*B*tan(d*x+c))/(a+b*tan(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate((B*b*tan(d*x + c) + B*a)/(b*tan(d*x + c) + a)^(3/2), x)